Acdreamer博客数论学习(1)

Acdreamer博客数论学习

Day One

等比数列求和.

求解$S_n = (a+a^2+…+a^n)modM$

采用二分.n%2==0时 $ S_n = (1+a^{(\frac{n}{2})} )S_{\frac{n}{2}} $ ,n%2==1时,$S_n = (1+a^{\frac{n+1}{2}})S_{\frac{n-1}{2}} + a^{\frac{n+1}{2}}$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;

const int mod = 7;

ll pow(int a, int k){
ll ans = 1;
while(k){
if(k&1)ans=ans*a%mod;
a=a*a%mod;
k>>=1;
}
return ans;
}

ll S(int a, int n){
if(n==1)return a%mod;
if(n&1){
return ((1+pow(a,(n+1)/2))%mod*S(a,(n-1)/2)%mod + pow(a,(n+1)/2)%mod)%mod;
}else{
return (1+pow(a,n/2))%mod*S(a,n/2)%mod;
}
}

int main(){
int a,n;
while(~scanf("%d%d",&a,&n)){
printf("%lld\n",S(a,n));
}
return 0;
}

题目:https://vjudge.net/problem/POJ-3233.

计算矩阵1-n次方和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
int n,k,m;
int mod = 1e9+7;
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;

struct Matrix{
int mp[35][35];
Matrix(){
memset(mp,0,sizeof mp);
}
Matrix(int v){
memset(mp,0,sizeof mp);
for(int i = 1; i <= n; i++){
mp[i][i] = v;
}
}
};

Matrix multi(Matrix a, Matrix b){
Matrix c;
for(int i = 1; i <= n; i++){
for(int k = 1; k <= n; k++){if(a.mp[i][k])
for(int j = 1; j <= n; j++){if(b.mp[k][j])
c.mp[i][j] = c.mp[i][j] + a.mp[i][k]*b.mp[k][j];
c.mp[i][j] %= mod;
}
}
}
return c;
}


Matrix pls(Matrix a, Matrix b){
Matrix c;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
c.mp[i][j] = a.mp[i][j]+b.mp[i][j];
c.mp[i][j] %= mod;
}
}
return c;
}

Matrix powmul(Matrix a, int k){
Matrix c = Matrix(1);
for(int i = 1; i <= n; i++)
c.mp[i][i] = 1;
while(k){
if(k&1)c = multi(c,a);
a = multi(a,a);
k>>=1;
}
return c;
}



Matrix S(Matrix a, int k){
Matrix temp = Matrix(1);
if(k==1)return a;
if(k&1){
Matrix temp2 = powmul(a,(k+1)/2);
return pls(multi(pls(temp, temp2), S(a,(k-1)/2)), temp2);
}else{
Matrix temp2 = powmul(a,k/2);
return multi(pls(temp, temp2), S(a,k/2));
}
}

int main(){
while(~scanf("%d%d%d",&n,&k,&m)){
Matrix a;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
scanf("%d",&a.mp[i][j]);
}
}
mod = m;
a = S(a,k);
for(int i = 1 ; i <= n; i++){
for(int j = 1; j <= n; j++){
printf("%d",a.mp[i][j]);
if(j!=n)printf(" ");
}
puts("");
}
}
return 0;
}

素数定理

$$
\pi(n)为小于等于n的素数的个数,有lim_{n→∞}\frac{\pi(n)}{n/lnn}=1
$$

定理$gcd(a^n-1,a^m-1)=a^{gcd(n,m)}-1$

在a>1,m,n>0时成立.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
int mod = 1e9+7;
ll gcd(ll a, ll b){
return b?gcd(b,a%b):a;
}

ll pow(ll a, ll k){
ll ans = 1;
while(k){
if(k&1)ans=ans*a%mod;
a = a*a%mod;
k>>=1;
}
return ans;
}

int main(){
int a,m,n,k1,t;scanf("%d",&t);
while(t--){
scanf("%d%d%d%d",&a,&m,&n,&k1);
mod = k1;
ll ans = pow(a,gcd(n,m))-1+mod;
printf("%lld\n",ans%mod);
}
return 0;
}

定理扩展$a>b,gcd(a,b)=1, gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$

定理$G=gcd(C_n^1,C_n^2,C_n^3,…,Cn^{n-1})$

  1. n为素数,答案为n;
  2. n有多个素因子,答案为1;
  3. n只有一个素因子,答案就是该素因子(其实包括了第一种情况

题目:https://vjudge.net/problem/HDU-2582

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define maxn 1000100
using namespace std;

bool judge[maxn];
int prime[maxn/10];
ll biao[maxn];
int tot = 0;
void init(){
memset(prime,0,sizeof prime);
memset(judge,0,sizeof judge);
for(int i = 2; i < maxn; i++){
if(!judge[i]){
for(int j = i+i; j < maxn; j+=i){
judge[j]=1;
}
prime[tot++]=i;
}
}
fill(biao,biao+maxn,1);
for(int i = 0; i < tot; i++){
for(ll j = prime[i]; j < maxn; j*=prime[i]){
biao[j]=prime[i];
}
}
for(int i = 4; i < maxn; i++){
biao[i]+=biao[i-1];
}
}

int main(){
int n;
init();
while(~scanf("%d",&n)){
printf("%lld\n",biao[n]);
}
return 0;
}

定理$F_n 为斐波那契额数列 ,gcd(F_m,F_n)=F_{gcd(m,n)}$

http://acm.nyist.net/JudgeOnline/problem.php?pid=468

此处需要学会一种新的判断素数的方式叫做Miller_Rabin素数测试.在DayTwo中有.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;

long long multi(long long a, long long b, long long mod){
long long temp = a, sum = 0;
while(b){
if(b & 1) sum = (sum + temp) % mod;
temp = (temp + temp) % mod;
b = b >> 1;
}
return sum;
}

long long Modular_exponent(long long a, long long x, long long mod){
long long t = a % mod, r = 1;
while(x){
if(x & 1) r = multi(r, t, mod);
t = multi(t, t, mod); x = x >> 1;
}
return r;
}

bool Miller_Rabin(long long n){
long long time = 20;
if(n < 2) return false;
if(n == 2) return true;
bool flag = false;
for(long long k = 0; k <= time; ++k){
flag = false;
long long d = n - 1, r = 0, t, a = rand() % (n - 2) + 2;
while((d & 1) == 0){
d = d>>1;
r++;
}
t = Modular_exponent(a, d, n);
if(t == 1 || t == n-1) {flag = true; continue;}
for(long long i = 1; i < r; i++){
t = multi(t, t, n);
if(t == 1) {flag = false; return flag;}
if(t == n-1) {flag = true; break;}
}
if(!flag) break;
}
return flag;
}

int main()
{
long long n;
while(scanf("%lld",&n)!=EOF)
puts((n == 4 || (n != 2 && Miller_Rabin(n))) ? "Yes" : "No");
return 0;
}

定理:给定两个互素的正整数A和B,那么他们最大不能组合的数为AB-A-B,不能组合的个数为num=$\frac{(A-1)(B-1)}{2}$

ax+by=c的存在非负解的条件就是c>AB-A-B.

HDU - 1792

1
2
3
4
5
6
7
8
9
10
#include<cstdio>
#include<iostream>
using namespace std;
int main(){
int a,b;
while(~scanf("%d%d",&a,&b)){
printf("%d %d\n",a*b-a-b,(a-1)*(b-1)/2);
}
return 0;
}

定理$\sum{gcd(i,N)=\sum{d\phi(\frac{N}{d})}}$

数论专题里也有一题如是说.

https://vjudge.net/problem/POJ-2480

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define maxn 50000
using namespace std;
bool judge[maxn];
int prime[maxn];
int tot;
void init(){
tot = 0;
memset(judge,0,sizeof judge);
memset(prime, 0, sizeof prime);
for(int i = 2; i < maxn; i++){
if(!judge[i]){
for(int j = i+i; j < maxn; j+=i){
judge[j] = 1;
}
prime[tot++]=i;
}
}
}

int main(){
init();
ll n;
while(~scanf("%lld",&n)){
ll ans = n;
for(int i = 0; i < tot && prime[i]*prime[i] <= n; i++){
if(n%prime[i]==0){
int cot = 0;
while(n%prime[i]==0){cot++;n/=prime[i];}
ans += ans * cot * (prime[i]-1)/prime[i];
}
}
if(n!=1)ans += ans*(n-1)/n;
printf("%lld\n",ans);
}
}

剩下没有题目的定理

$$
(n+1)lcm(C_n^0,C_n^1,C_n^2,…,C_N^{n-1},C_n^N)=lcm(1,2,…,n+1)
$$

$$
定理:任何n个连续的正整数的乘积均可被n!整除
$$

结论:
$$
如果p是素数,那么C_p^1,C_p^2,C_p^3,…C_p^{p-1},均能被p整除\
如果p是素数,那么有(x+y+..+w)^p≡x^p+y^p+…+w^p(mod p)\
$$

Day Two

卢卡斯-莱默检验法 检验梅森素数

$$
梅森素数M_p =2^p-1,p为素数.,定义序列{s_i},所有的i ≥ 0, \
si= \begin{cases} 4, i=0 \ s_{i-1}^{2}-2,i>0 \end{cases}
M_p是素数当且仅当s_{p-2} \equiv 0(modM_p)
$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;

ll T,p;
ll multi(ll a, ll b, ll m){
ll ans = 0;
while(b){
if(b&1)ans = (ans+a)%m;
a = (a+a)%m;
b>>=1;
}
return ans;
}

int main(){
scanf("%lld",&T);
while(T--){
scanf("%lld",&p);
ll n = ((ll) 1<<p)-1;
ll r = 4;
if(p==2)puts("yes");
else{
while((--p)!=1)r=(multi(r,r,n)-2+n)%n;
if(r%n==0)puts("yes");
else puts("no");
}
}
}

Miller-Rabin素数测试

费马小定理:对于素数p和任意整数a,有$$a^p ≡ a(mod p)$$(同余)。反过来,满足$$a^p ≡ a(mod p)$$,p也几乎一定是素数。

  伪素数:如果n是一个正整数,如果存在和n互素的正整数a满足 $a^{n-1} ≡ 1(mod n)$,我们说n是基于a的伪素数。如果一个数是伪素数,那么它几乎肯定是素数。

​ 序列:
​ a^m%n; a^(2m)%n; a^(4m)%n; …… ;a^(m*2^q)%n把上述测试序列叫做Miller测试,关于Miller测试,有下面的定理:

定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真.Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k).

  Miller-Rabin测试:不断选取不超过n-1的基b(s次),计算是否每次都有$$b^{n-1} ≡ 1(mod n)$$,若每次都成立则n是素数,否则为合数。 

二次探测定理 :p为素数,0<x<p,则方程$x^2 ≡ 1(mod p)的解为1或者p-1$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<iostream>
#define ll long long
using namespace std;
const int Times = 10;

ll multi(ll a, ll b ,ll m){
ll ans = 0;
a%=m;
while(b){
if(b&1)ans = (ans+a)%m;
a = (a+a)%m;
b >>= 1;
}
return ans;
}

ll quick_mod(ll a, ll b, ll m){
ll ans = 1;
a %= m;
while(b){
if(b&1)ans = multi(ans, a, m);
a = multi(a,a,m);
b>>=1;
}
return ans;
}

bool Miller_Rabin(ll n){
if(n==2)return true;
if((n<2) || !(n&1))return false;
ll m = n-1;
int k = 0;
while((m&1)==0){
k++;
m>>=1;
}
for(int i = 0; i < Times; i++){
ll a = rand()%(n-1)+1;
ll x = quick_mod(a,m,n);
ll y = 0;
for(int j = 0; j < k; j++){
y = multi(x,x,n);
if(y==1 && x!=1 && x!= n-1)return false;
x = y;
}
if(y!=1)return false;
}
return true;
}

int main(){
int T;
scanf("%d",&T);
while(T--){
ll n;
scanf("%lld",&n);
if(Miller_Rabin(n))puts("Yes");
else puts("No");
}
return 0;
}

例题:[http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1186

java写大数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import java.math.BigInteger;
import java.util.Random;
import java.util.Scanner;

/**
* Created by huchi on 17-7-18.
*/

public class test {
public static final int Times = 10;

public static BigInteger quick_mod(BigInteger a, BigInteger b, BigInteger m){
BigInteger ans = BigInteger.ONE;
a = a.mod(m);
while(!b.equals(BigInteger.ZERO)){
if(b.mod(BigInteger.valueOf(2)).equals(BigInteger.ONE)){
ans = (ans.multiply(a)).mod(m);
b = b.subtract(BigInteger.ONE);
}
b = b.divide(BigInteger.valueOf(2));
a = (a.multiply(a)).mod(m);
}
return ans;
}

public static boolean Miller_Rabin(BigInteger n){
if(n.equals(BigInteger.valueOf(2)))return true;
if(n.equals(BigInteger.ONE))return false;
if((n.mod(BigInteger.valueOf(2))).equals(BigInteger.ZERO))return false;
BigInteger m = n.subtract(BigInteger.ONE);
BigInteger y = BigInteger.ZERO;
int k = 0;
while((m.mod(BigInteger.valueOf(2))).equals(BigInteger.ZERO)){
k++;
m = m.divide(BigInteger.valueOf(2));
}
Random d = new Random();
for(int i = 0; i < k; i++){
int t = 0;
//随机数
if(n.compareTo(BigInteger.valueOf(10000))==1){
t = 10000;
}else{
t = n.intValue()-1;
}
int a = d.nextInt(t) + 1;
BigInteger x = quick_mod(BigInteger.valueOf(a), m, n);
//测试
for(int j = 0; j < k; j++){
y = (x.multiply(x)).mod(n);
if(y.equals(BigInteger.ONE)
&& !(x.equals(BigInteger.ONE))
&& !(x.equals(n.subtract(BigInteger.ONE)))){
return false;
}
x = y;
}
if(!(y.equals(BigInteger.ONE)))return false;
}
return true;
}

public static void main(String[] args){
Scanner in = new Scanner(System.in);
while(in.hasNextBigInteger()){
BigInteger n = in.nextBigInteger();
if(Miller_Rabin(n))System.out.println("Yes");
else System.out.println("No");
}
}
}

扩展欧几里得

二元一次方程$$ax_1+by_1=gcd(a,b)$$;

a>b时,b==0时,x=1,y=0, 否则设$bx_2+(a\ mod\ b)y_2 = gcd(b, a\ mod \ b)=gcd(a,b)$

又有$ax_1 +by_1=bx_2+(a-[\frac{a}{b}]b)y_2$

则有$x_1=y_2,y_1=x_2-[\frac{a}{b}]y_2$, 用递推实现.

1
2
3
4
5
6
7
8
9
void e_gcd(int a, int b, int &d, int &x, int &y){
if(!b){
d=a,x=1,y=0;
return;
}else{
e_gcd(b,a%b,d,y,x);
y -= (a/b)*x;
}
}

代表的是ax+by=gcd(a,b)的解x,y,和d为gcd(a,b);,得到的x,y中a>b则x为正.在gcd(a,b)==1的时候,可以领y=(y%a+a)%a把y变成正的,再根据等式把x变成负的就行.

例题:https://vjudge.net/problem/POJ-2142

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;

int gcd(int a, int b){
return b?gcd(b,a%b):a;
}

void e_gcd(int a, int b, int &d, int &x, int &y){
if(!b){
d=a,x=1,y=0;
return;
}else{
e_gcd(b,a%b,d,y,x);
y -= (a/b)*x;
}
}

int main(){
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c) && (a+b+c)){
int x, y, d, tx, ty;
int gd = gcd(a,b);
a /= gd; b/= gd; c/= gd;
e_gcd(a,b,d,x,y);
//获取x非负的时候的情况
tx = x*c;
tx = (tx%b + b)%b;
ty = (c-tx*a)/b;
if(ty < 0)ty = -ty;
//获取y非负的情况
y = y*c;
y = (y%a + a)%a;
x = (c-b*y)/a;
if(x<0)x =-x;
if(x+y>tx+ty){
x=tx;
y=ty;
}
printf("%d %d\n",x,y);
}
return 0;
}

https://vjudge.net/problem/HIT-2815

题目没读清,特判就写错了,扩展欧几里得和上面一道题一样的用.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;

ll gcd(ll a, ll b){
return b?gcd(b, a%b):a;
}

void e_gcd(ll a, ll b, ll &d, ll &x, ll &y){
if(!b){
d = a; x = 1; y = 0;
return ;
}else{
e_gcd(b,a%b,d,y,x);
y -= (a/b)*x;
}
}

int main(){
ll t,a,b,d,x,y;scanf("%lld",&t);
while(t--){
scanf("%lld%lld",&a,&b);
if(a*b==0){
if(a==1 || b==1){
puts("1");
}else{
puts("-1");
}
}else if(a==1 || b==1){
if(max(a,b)==2)
puts("1");
else puts("2");
}
else if(gcd(a,b)!=1){
puts("-1");
}else{
e_gcd(a,b,d,x,y);
ll tx,ty;
tx = (x%b+b)%b;
ty = (1-a*x)/b;
if(ty<0)ty = -ty;
y = (y%a+a)%a;
x = (1-b*y)/a;
if(x<0)x=-x;
if(x+y>tx+ty){
x = tx;
y = ty;
}
printf("%lld\n",x+y-1);
}
}
return 0;
}

毕达哥拉斯三元组的解

$x^2+y^2=z^2$,只考虑本原解.不妨假设x为偶数,y,z为奇数.这样就必有$x=2mn,y=m^2-n^2,z=m^2+n^2$.

例题:https://vjudge.net/problem/POJ-1305

输出两个数据,一个是z不大于n的本原解的个数,和本原解中没有用到的数的个数.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 1000111
using namespace std;

int biao[maxn];
bool flag[maxn];

int gcd(int a, int b){
return b?gcd(b,a%b):a;
}

int main(){
int n;
memset(flag,0,sizeof flag);
for(int i = 2; i*i < maxn; i++){
for(int j = 1; j < i; j++){
if(gcd(i,j)!=1)continue;
if((i&1)&&(j&1))continue;
if(i*i+j*j<maxn)biao[i*i+j*j]++;
}
}
for(int i = 1; i < maxn; i++){
biao[i]+=biao[i-1];
}
while(~scanf("%d",&n)){
memset(flag,0,sizeof flag);
int ans = 0;
for(int i = 2; i*i < maxn; i++){
for(int j = 1; j < i; j++){
if(gcd(i,j)!=1)continue;
if((i&1)&&(j&1))continue;
for(int k = 1; k*(i*i+j*j)<=n; k++){
flag[2*i*j*k]=flag[k*(i*i-j*j)]=flag[k*(i*i+j*j)]=1;
}
}
}
for(int i = 1; i <= n; i++)
if(flag[i])ans++;
printf("%d %d\n",biao[n],n-ans);
}
return 0;
}

例题二:

利用毕达哥拉斯三元组+欧拉函数+容斥原理

https://vjudge.net/problem/HDU-3939???

寻找满足的i,j满足gcd(i,j)=1,dfs()容斥原理来找有多少互斥的数.

这里需要判断i<=j和i>j的情况.其中,i<=j时,i为偶数,则直接加phi[i],i为奇数时,由于j必须为偶数,不能用phi[i],所以用容斥原理,一共i>>1个数(晒去了2的倍数).大于时同理.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define ll long long
#define maxn 1001000
using namespace std;

bool judge[maxn];
int prime[maxn/10];
int phi[maxn];
int check[40];
int tot,num;
ll ans;
void init(){
tot = 0;
memset(judge, 0, sizeof judge);
for(int i = 2; i < maxn; i++){
if(!judge[i]){
for(int j = i+i; j < maxn; j+=i){
judge[j]=1;
}
prime[tot++]=i;
}
}
for(int i = 1; i < maxn; i++)phi[i]=i;
for(int i = 2; i < maxn; i+=2)phi[i]>>=1;
for(int i = 3; i < maxn; i+=2)if(phi[i]==i){
for(int j = i; j < maxn; j+=i){
phi[j] = phi[j] - phi[j]/i;
}
}
}
void prime_check(int n){
num = 0;
if(!judge[n]){
check[num++]=n;
return ;
}
for(int i = 0; i < tot && n > 1; i++){
if(n%prime[i]==0){
check[num++]=prime[i];
while(n%prime[i]==0) n/=prime[i];
if(n>1 && !judge[n]){
check[num++]=n;
return ;
}
}
}
}
//容斥原理计算无关的数fun(j)=j-(j/c1+j/c2+j/c3)+(j/(c1*c2)+j/(c1*c3)+j/(c2*c3))-(j/(c1*c2*c3))。
void dfs(int k, int r, int s, int n){
if(k==num){
if(r&1) ans -= n/s;
else ans+= n/s;
return;
}
dfs(k+1, r, s, n);
dfs(k+1, r+1, s*check[k], n);
}

ll L;
int main(){
init();
int t;scanf("%d",&t);
while(t--){
ans = 0;
scanf("%lld",&L);
int m = (int)sqrt(1.0*L);
for(int i = m; i > 0; i--){
int p = (int)sqrt(L - (ll)i*i);
//需要寻找gcd(i,j)=1的个数
if(i<=p){
if(i&1){
prime_check(i);
dfs(0,0,1,i>>1);
}else ans+=phi[i];
}else{
// i>p时,j所取的范围在[1,p]
prime_check(i);
if(i&1)dfs(0,0,1,p>>1);
else dfs(0,0,1,p);
}
}
printf("%lld\n",ans);
}
}

欧拉函数与欧拉定理

定理一:$$m与n互素,\phi(mn)=\phi(m)\phi(n)$$, 所以n为奇数时,我们有$\phi(2n)=\phi(n)$

定理二: p是素数,有$\phi(p^a)=p^a-p^{a-1}$,容斥原理.

定理三: $n=p_1^{\alpha_1}p_2^{\alpha_2}…p_k^{\alpha_k}时,\phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})…(1-\frac{1}{p_k})$ 定理1+3

定理四: $\sum_{d|n}{\phi(d)}= n$ 莫比乌斯反演.

定理五: (a,m)=1,则$x \equiv ba^{\phi(m)-1} 是同于方程 ax \equiv b(mod \ m)$

定理六: n>2时,$\phi(n)$为偶数

定理三求解欧拉函数

1
2
3
4
5
6
7
8
9
10
11
int phi(int n){
int ans = n;
for(int i = 2; i*i <= n; i++){
if(n%i==0){
ans = ans - ans/i;
while(n%i==0) n/=i;
}
}
if(n>1)ans = ans-ans/n;
return ans;
}

容斥原理,筛法去减不满足的.

1
2
3
4
5
6
7
8
9
10
11
12
13
#define maxn 100000
int p[maxn];
void phi_table(){
memset(p,0,sizeof p);
for(int i = 1; i < maxn; i++)p[i]=i;
for(int i = 2; i < maxn; i+=2)p[i]>>=1;
for(int i = 3; i < maxn; i+=2){
if(p[i]==i){
for(int j = i; j < maxn; j+=i)
p[j]=p[j]-p[j]/i;
}
}
}

二次筛法

这道题有类似的在kuangbin的数论基础专题里有出现过.

例题:https://vjudge.net/problem/POJ-2689

注意1 2这个样例...还有晒的时候不能把质数也晒了....

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include<cstdio>
#include<iostream>
#include<cstring>
#define maxn 50000
int prime[maxn];
bool judge2[21*maxn];
bool judge1[maxn];
using namespace std;
int tot=0;
void init(){
memset(judge1,0,sizeof judge1);
for(int i = 2; i<maxn; i++){
if(!judge1[i]){
prime[tot++] = i;
for(int j = i+i; j < maxn; j+=i){
judge1[j]=true;
}
}
}
}

int main(){
init();
unsigned int u,v;
while(~scanf("%d%d",&u,&v)){
if(u==1)u=2;
memset(judge2,0,sizeof judge2);
for(int i = 0; i < tot; i++){
if(prime[i]>v)break;
unsigned int j=u/prime[i]*prime[i];
if(u%prime[i]==0 && u!=prime[i])judge2[0]=1;
while(j<=u)j+=prime[i];
if(j==prime[i])j+=j;
for(;j<=v;j+=prime[i]){
judge2[j-u]=1;
}
}
int st,stlen=maxn,ed,edlen=0;
int cot=0,len=0;
for(int i = 0; i <= v-u; i++){
if(!judge2[i]){
if(len &&len<stlen){
st = i-len;
stlen = len;
}
if(len && len>edlen){
ed = i-len;
edlen = len;
}
cot++;
len = 0;
}
len ++ ;
}
if(cot!=2 && st==ed){
ed = st+stlen;
}
if(cot>1)printf("%d,%d are closest, %d,%d are most distant.\n",u+st,u+st+stlen,u+ed,u+ed+edlen);
else puts("There are no adjacent primes.");
}
return 0;
}

逆元

正整数a,m,如果有$ax \equiv 1(mod \ m)$,这个同于方程中x的最小正整数解叫做a模m的逆元.

逆元一般用扩展欧几里得算法来求.m为素数时,由费马小定理得到逆元为$a^{m-2}modm$

逆元常见问题

已知b|a,求解$ans = \frac{a}{b}mod \ m$

常见解法:扩展欧几里得.m是素数时,直接用费马小定理.但他们都需要a与m互素.

除法取模求逆元的通用方法: $ans =\frac{ a \ mod(mb)}{b}$
$$
\frac{a}{b}=km+x(x<m),a=kbm+bx,a\ mod(bm)=bx,x = \frac{a\ mod(bm)}{b}
$$
例题:https://vjudge.net/problem/POJ-1845

求$A^B$的所有因子和对9901取余的结果.

考虑$$A=p_1^{\alpha_1}p_2^{\alpha_2}…p_k^{\alpha_k} ,A^B=p_1^{\alpha_1 B}p_2^{\alpha_2B}…p_k^{\alpha_kB}$$

所有的因子和:$$sum=\prod_{1\le i \le k} \sum_{0 \le j \le \alpha_iB} p_i^{j}$$

可以用二分求等比数列和,也可以用等比数列公式(需要用逆元)直接求.分别写在了Method_one和Method_two中.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define ll long long
#define maxn 10000
using namespace std;
ll mod =9901;
bool judge[maxn];
ll check[maxn][2];
int prime[maxn/2];
int tot,num;
ll a,b;
void init(){
tot=0;
memset(judge, 0, sizeof judge);
for(int i = 2; i < maxn; i++){
if(!judge[i]){
for(int j = i+i; j < maxn; j+=i){
judge[j]=1;
}
prime[tot++]=i;
}
}
}

ll multi(ll a, ll b, ll m){
ll ans = 0;
a %= m;
while(b){
if(b&1)ans = (ans+a)%m;
a = (a+a)%m;
b >>= 1;
}
return ans;
}

ll largequickmod(ll p, ll k, ll m){
ll ans = 1;
while(k){
if(k&1)ans = multi(ans,p,m);
p = multi(p,p,m);
k>>=1;
}
return ans;
}

ll quickmod(ll p, ll k){
ll ans=1;
p%=mod;
while(k){
if(k&1)ans = ans*p%mod;
p = (p*p)%mod;
k>>=1;
}
return ans;
}

ll S(ll p, ll k){
if(p==0)return 0;
if(k==0)return 1;
ll temp = quickmod(p,(k>>1))%mod;
if(k&1){
return S(p,k>>1)%mod*(1+temp*p%mod)%mod;
}else{
return (S(p,(k>>1)-1)%mod*(1+temp*p%mod)%mod+temp)%mod;
}
}

void Method_one(){
ll ans = 1;
for(int i = 0; i < num; i++){
ans = (ans * S(check[i][0], b*check[i][1]))%mod;
}
if(a==0)ans=0;
printf("%lld\n",ans);
}

void Method_two(){
ll ans = 1;
for(int i = 0; i < num; i++){
ll M = mod*(check[i][0]-1);
ans *= (largequickmod(check[i][0], check[i][1]*b+1, M)+M-1)/(check[i][0]-1);
ans %= mod;
}
printf("%lld\n",ans);
}

int main(){
init();
while(~scanf("%lld%lld",&a,&b)){
ll temp = a;
num=0;
memset(check, 0, sizeof check);
for(int i = 0; i < tot; i++){
if(temp<=1)break;
if(temp%prime[i]==0){check[num++][0]=prime[i];}
while(temp%prime[i]==0){
temp/=prime[i];
check[num-1][1]++;
}
}
if(temp>1){
check[num][0]=temp;
check[num++][1]=1;
}
//Method_one();
Method_two();
}
return 0;
}

1→p模p的所有逆元,这里p为奇质数.用快速幂的复杂度O(plog(p)),用递推式可以优化到O(p):
$$
inv[i] = (M-M/i)inv[M\%i] \%M \ 推导:t=M/i,k=M\%i,有ti+k \equiv 0 (modM), -ti \equiv k(modM)\ 两边同时除ik记作:-tinv[k] \equiv invi\ 即 inv[i] = (M- M/i)inv[M\%i]\%M
$$
初始化inv[1]=1,就可以通过递推法求出1→p模奇素数的所有逆元.

http://www.lydsy.com/JudgeOnline/problem.php?id=2186

例题:1-N!中与M!互质的数的个数,M<=N;M!|N!, .当n是m的倍数时,1-n中与m互素的个数为$\frac{n}{m}\phi(m)$

题目中 $\frac{N!}{M!}\phi(M!) = \frac{N!}{M!}M!(1-\frac{1}{p_1})(1-\frac{1}{p_2})…(1-\frac{1}{p_k})$.  

时间卡的特别紧.bool开的就超时了.inv[i]算逆元.multi[maxn]算阶乘取模,要求p与m互质,否则需要用除法取模.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include<cstdio>
#include<bitset>
#define ll long long
#define maxn 10000005
using namespace std;
ll mod;
bitset<maxn> judge;
void init(){
judge.set();
for(int i = 4; i < maxn; i+=2)judge[i]=0;
for(int i = 3; i < maxn; i+=2){
if(judge[i]){
for(int j = i+i; j < maxn; j+=i){
judge[j]=0;
}
}
}
}
ll multi[maxn];
int inv[maxn];
ll ans[maxn];

int main(){
init();
int T,R;
scanf("%d%d",&T,&R);
mod = R;
multi[0]=1;
for(int i = 1; i < maxn; i++){
multi[i]=multi[i-1]*i%mod;
}
inv[1]=1;
for(int i = 2; i < mod && i < maxn; i++){
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
ans[1]=1;
for(int i = 2; i < maxn; i++){
if(judge[i]){
ans[i] = ans[i-1]*(i-1)%mod;
ans[i] = ans[i]*inv[i%mod]%mod;
}else{
ans[i] = ans[i-1];
}
}
int n,m;
while(T--){
scanf("%d%d",&n,&m);
ll anss = 1LL*multi[n]*ans[m]%mod;
printf("%lld\n",anss);
}
return 0;
}

欧拉筛

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
void getphi()    
{
int i,j;
phi[1]=1;
for(i=2;i<=N;i++)//相当于分解质因式的逆过程
{
if(!mark[i])
{
prime[++tot]=i;//筛素数的时候首先会判断i是否是素数。
phi[i]=i-1;//当 i 是素数时 phi[i]=i-1
}
for(j=1;j<=tot;j++)
{
if(i*prime[j]>N) break;
mark[i*prime[j]]=1;//确定i*prime[j]不是素数
if(i%prime[j]==0)//接着我们会看prime[j]是否是i的约数
{
phi[i*prime[j]]=phi[i]*prime[j];break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性
}
}
}
文章目录
  1. 1. Acdreamer博客数论学习
  2. 2. Day One
    1. 2.1. 等比数列求和.
    2. 2.2. 素数定理
    3. 2.3. 定理$gcd(a^n-1,a^m-1)=a^{gcd(n,m)}-1$
    4. 2.4. 定理扩展$a>b,gcd(a,b)=1, gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$
    5. 2.5. 定理$G=gcd(C_n^1,C_n^2,C_n^3,…,Cn^{n-1})$
    6. 2.6. 定理$F_n 为斐波那契额数列 ,gcd(F_m,F_n)=F_{gcd(m,n)}$
    7. 2.7. 定理:给定两个互素的正整数A和B,那么他们最大不能组合的数为AB-A-B,不能组合的个数为num=$\frac{(A-1)(B-1)}{2}$
    8. 2.8. 定理$\sum{gcd(i,N)=\sum{d\phi(\frac{N}{d})}}$
    9. 2.9. 剩下没有题目的定理
  3. 3. Day Two
    1. 3.1. 卢卡斯-莱默检验法 检验梅森素数
    2. 3.2. Miller-Rabin素数测试
    3. 3.3. 扩展欧几里得
    4. 3.4. 毕达哥拉斯三元组的解
    5. 3.5. 欧拉函数与欧拉定理
    6. 3.6. 二次筛法
    7. 3.7. 逆元
    8. 3.8. 欧拉筛
|